
Just What You Desire: Constrained Timeline Summarization with Self-Reflection
for Enhanced Relevance

Muhammad Reza Qorib1, Qisheng Hu2*, Hwee Tou Ng1

1Department of Computer Science, National University of Singapore
2College of Computing and Data Science, Nanyang Technological University

mrqorib@u.nus.edu, qisheng001@e.ntu.edu.sg, nght@comp.nus.edu.sg

Abstract

Given news articles about an entity, such as a public figure or
organization, timeline summarization (TLS) involves gener-
ating a timeline that summarizes the key events about the en-
tity. However, the TLS task is too underspecified, since what
is of interest to each reader may vary, and hence there is not
a single ideal or optimal timeline. In this paper, we intro-
duce a novel task, called Constrained Timeline Summariza-
tion (CTLS), where a timeline is generated in which all events
in the timeline meet some constraint. An example of a con-
strained timeline concerns the legal battles of Tiger Woods,
where only events related to his legal problems are selected
to appear in the timeline. We collected a new human-verified
dataset of constrained timelines involving 47 entities and 5
constraints per entity. We propose an approach that employs
a large language model (LLM) to summarize news articles
according to a specified constraint and cluster them to iden-
tify key events to include in a constrained timeline. In addi-
tion, we propose a novel self-reflection method during sum-
mary generation, demonstrating that this approach success-
fully leads to improved performance.

Code and Data — https://github.com/nusnlp/reacts

Introduction
In today’s internet era, the rapid and massive flow of infor-
mation makes it hard to stay updated, particularly for top-
ics with extensive coverage over time. In the United States
alone, Hamborg, Meuschke, and Gipp (2018) report that
more than 5,000 news articles are being published every day.
To help readers quickly grasp important information, many
news platforms offer news in a timeline format, especially
for important topics that progress over time, such as pan-
demics1 or conflicts2.

The task of summarizing news articles, or any collections
of text documents, into timelines is called timeline summa-
rization (TLS). Timeline summarization aims to automati-

*Work done while Qisheng Hu was affiliated with the National
University of Singapore.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.cdc.gov/museum/timeline/covid19.html
2https://www.usnews.com/news/best-countries/slideshows/a-

timeline-of-the-russia-ukraine-conflict

Original Timeline
2003-11-19: Receives the National Book Foundation

Medal for Distinguished Contribution to
American Letters.

2015-09-10: Is awarded the National Medal of Arts by
US President Barack Obama.

2015-11-03: Releases a collection of short stories enti-
tled “The Bazaar of Bad Dreams.”

2018-07-25: King is an executive producer of a show
written for the streaming service Hulu. The
series, “Castle Rock,” is named after the
fictional small Maine town that provides
the setting for various King books and sto-
ries.

2020-04-21: King’s latest book, “If It Bleeds” is pub-
lished. The book is a compilation of four
novellas.

2021-06-04: The miniseries “Lisey’s Story,” adapted by
King and based on his 2006 novel of the
same name, premieres on Apple TV+.

2022-09-06: King’s novel “Fairy Tale” is published.

Constrained Timeline
Constraint: Focus on Stephen King’s book releases.
2015-11-03: Releases a collection of short stories enti-

tled “The Bazaar of Bad Dreams.”
2020-04-21: King’s latest book, “If It Bleeds” is pub-

lished. The book is a compilation of four
novellas.

2022-09-06: King’s novel “Fairy Tale” is published.

Table 1: An unconstrained timeline of Stephen King and
a constrained version focusing on Stephen King’s book re-
leases.

cally condense long-running news topics into temporally or-
dered time-stamped textual summaries of events on a par-
ticular topic. Timeline summarization aims to include any
important events into the timeline without considering par-
ticular aspects that the readers are interested in.

To take a reader’s interest into account when generating
a timeline, we propose a new task called constrained time-
line summarization (CTLS). Constrained timeline summa-
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rization offers personalization that TLS lacks. For example,
a reader may want to automatically retrieve the timeline of
Stephen King’s book publication (Table 1). In this example,
Stephen King’s national awards are irrelevant to the reader
even though they are generally considered important events
in Stephen King’s life.

The contributions of this paper are as follows:
• We propose a new task, constrained timeline summariza-

tion. The task has real-life applications.
• We present a new test set to benchmark models on the

constrained timeline summarization task.
• We present an effective method that utilizes large lan-

guage models without any need for training or fine-
tuning.

• We propose a novel self-reflection method to produce a
more relevant constrained event summary and demon-
strate that self-reflection helps in generating more rele-
vant constrained timelines.

Related Work
In this section, we briefly discuss related work on time-
line summarization, query-based summarization, and update
summarization. Constrained timeline summarization can be
viewed as an amalgamation of the first two tasks.

Timeline Summarization
Previous work on timeline summarization can be catego-
rized into three main approaches: direct summarization,
date-wise approaches, and event detection approaches.

Direct Summarization In this approach, a collection of
documents is treated as a set of sentences to be directly ex-
tracted. Sentence extraction can be performed by optimiz-
ing sentence combinations (Martschat and Markert 2018) or
by ranking sentences (Chieu and Lee 2004). This category
also includes methods that treat the task as an extension of
multi-document summarization, where the goal is to gener-
ate a summary from multiple documents (Allan, Gupta, and
Khandelwal 2001; Yu et al. 2021).

Date-wise Approach In this approach, the task is divided
into two steps: identifying important dates and summarizing
events that occurred on those dates. Most methods employ
supervised techniques to select the dates. For instance, Gha-
landari and Ifrim (2020) propose a classification or regres-
sion model to predict date importance, while Tran, Herder,
and Markert (2015) utilize graph-based ranking for date se-
lection.

Event Detection In this approach, the system first detects
important events from the articles by clustering them based
on similarity. It then ranks and selects the most important
clusters and summarizes them into event descriptions. Var-
ious techniques have been proposed for clustering, includ-
ing Markov clustering on bag-of-words features (Ghalandari
and Ifrim 2020), dynamic affinity-preserving random walks
(Duan, Jatowt, and Yoshikawa 2020), event graph compres-
sion (Li et al. 2021), date graph model (La Quatra et al.
2021), heterogeneous graph attention networks (You et al.

2022), and even large language models (Hu, Moon, and Ng
2024).

Query-Based Summarization
Query-based summarization, also called query-focused,
topic-based, or user-focused summarization, aims to extract
and summarize information that users are specifically inter-
ested in from a large number of texts. Essentially, it is a type
of summarization that leverages user-provided query infor-
mation.

Early approaches to query-based summarization mainly
score or rank the relevance of each sentence in the docu-
ment to the query based on predefined features (Rahman and
Borah 2015). Sentences with the highest scores are then ex-
tracted to create the summary. Relevance scoring can be per-
formed in an unsupervised manner by utilizing lexical and
semantic features (Conroy, Schlesinger, and O’Leary 2006;
Krishna, Kumar, and Reddy 2013) or in a supervised man-
ner by training regressor models (Mani and Bloedorn 1998;
Ouyang et al. 2011). Document graphs are also often em-
ployed when dealing with multiple documents (Mohamed
and Rajasekaran 2006; Wang et al. 2013).

Due to the effectiveness of transformers, recent query-
based summarization methods are predominantly based on
transformer models, including large language models. For
example, Laskar, Hoque, and Huang (2020) incorporate
query relevance into BERTSUM (Liu and Lapata 2019),
while Park and Ko (2022) integrate a query-attentive se-
mantic graph with sequence-to-sequence transformers. Fine-
tuning large language models has also been explored, such
as in the work by Xu et al. (2023), who fine-tune BART
(Lewis et al. 2020), and Cao et al. (2024), who fine-tune
Llama 2 (Touvron et al. 2023) using custom adapters.

Update Summarization
Update summarization is the task of generating a short sum-
mary from a set of documents A under the assumption that
users have read a set of documents B (Dang and Owczarzak
2009). Update summarization has a different objective from
timeline summarization, but the methods proposed for it of-
ten bear some resemblance to the event detection approach
for timeline summarization, notably in determining the nov-
elty of the information from set A in relation to set B (Stein-
berger and Ježek 2009). In the context of timeline sum-
marization, novelty detection involves determining whether
the extracted events from set A are new events that are not
present in set B.

Dataset
To benchmark the constrained timeline summarization task,
we propose a novel test set called CREST (Constraint
Restrictions on Entities to Subset Timelines). CREST con-
sists of 235 timelines from 47 public figures or institutions
(entities). We derive these timelines from the ENTITIES
dataset (Ghalandari and Ifrim 2020), which were crawled
from CNN Fast Facts. For each entity, we generate 5 pairs of
constraints and corresponding subset timelines. The article
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Figure 1: The dataset creation process consists of three steps: constraint generation, event annotation, and event filtering.
Human annotators are tasked with determining whether an event in a timeline adheres to a constraint or not. The list of events
that adheres to a constraint becomes a constrained timeline.

pool is sourced from the ENTITIES dataset, which was col-
lected from The Guardian using the official API3. As such,
our dataset is limited to British and American news sources.
The dataset creation process involves constraint generation,
event annotation, and event filtering.

Constraint Generation
We generate constraints by prompting GPT-4o4 and manu-
ally selecting the best 5 constraints for each timeline. The
prompt instructs GPT-4o to propose single-sentence con-
straints in the format “Focus on ...”. To ensure that we have a
variety of constraints, we query GPT-4o with four different
types of prompts: general, numerical, relational, and geo-
graphical. The general prompt asks GPT-4o for constraint
suggestions without any additional specification. The nu-
merical prompt asks GPT-4o to generate constraints that
contain ordinal phrases (e.g., first, second, etc.) or time in-
dicators (e.g., timestamp, month, year, etc.). The relational
prompt focuses on constraints involving some relationship
between the entity and other public figures or institutions
(e.g., “Focus on Stephen King’s interactions with President
Barack Obama.”), while the geographical prompt asks for
constraints with geographical information.

We find that GPT-4o generally suggests good constraints,
but occasionally, the suggestions include hallucinations
(e.g., constraints referencing non-existent events in the time-
line) or are overly specific (e.g., only applicable to one
event). Therefore, a human-in-the-loop process is essential
to curate a good set of constraints for each timeline. Human
intervention involves selecting the proposed constraints and
modifying them to be more general.

Event Annotation
Given a list of events Et from timeline t and a set of con-
straints Ct for timeline t, we build the constrained timelines
by asking human annotators to label whether each event in
the timeline adheres to each constraint. All constraints are

3https://open-platform.theguardian.com/
4gpt-4o-2024-08-06

applied to all events in the timeline, resulting in |Et| × |Ct|
assertions. Each annotator is provided with the complete
timeline (containing all events) and the full set of constraints
for that timeline.

We recruited 4 university students with strong English
proficiency as annotators. To ensure high-quality annota-
tions, the annotators completed a qualifying test by perform-
ing annotations on a different timeline. The annotators per-
formed the task for approximately four hours and were com-
pensated above standard rates ($22.65/hour). We found that
our test set had high inter-annotator agreement, with an ex-
act match percentage of 94.7% and a Cohen’s kappa of 0.78
between the first and second annotators and an exact match
percentage of 96.2% and a Cohen’s kappa of 0.88 between
the third and fourth annotators.

Event Filtering
One challenge with the ENTITIES dataset is that the article
pool and timelines were collected independently from differ-
ent sources. This causes a mismatch between the events cov-
ered by the articles and those included in the timelines. As a
result, some important events in the ground-truth timelines
are not covered by the article pool, making it impossible for
the model to generate them without external knowledge. In
such cases, even a human would not be able to achieve a
perfect score.

To avoid unfairly penalizing an automatically constructed
model, we provide an additional evaluation setting in which
events in the timelines that are not covered by the article pool
are filtered out. Given that the article pool contains more
than forty-five thousand news articles, manually checking
event coverage would be too costly and labor intensive. Fol-
lowing previous work (Gilardi, Alizadeh, and Kubli 2023),
we utilize GPT-4o to check each article for information re-
lated to the events in question.

It is important to note that we only filter out events from
the timelines, while the article pool remains unchanged. We
assume that the ground truth timelines are comprehensive
lists of all significant events related to the entities. We re-
port the statistics of our dataset for both the full and filtered
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Statistics All Events Filtered
# topics 47 47
# timelines 233 201
# events 1031 667
Avg. # articles per topic 959 959
Avg. # timelines per topic 4.96 4.28
Avg. # events per timeline 4.42 3.32

Table 2: Statistics of our proposed dataset (CREST).

settings in Table 2.

Algorithm 1: Method

Require: A queue of articles A, a topic keyword q, a con-
straint c, a new article ai that arrived at time i, the event
database D, the event clusters G, the retrieval limit N , the
number of dates l in the timeline, the number of sentences
per date k in the timeline.

Ensure: A timeline Tq,c about topic q following the con-
straint c, comprising l timestamped event descriptions,
each with k sentences.
ai ← DEQUEUE(A)
ei ← CONSTRAINEDTOPICSUM(ai, q, c)
if ei ̸= NULL then

if ADHERETOCONSTRAINT(ei, q, c) then
Edges← {}
for all ej ∈ RETRIEVE(D, ei, N) do

if SAMEEVENT(ei, ej) then
Edges← Edges ∪ {[ei, ej ]}

end if
end for
G← UPDATECLUSTERS(G,Edges)
D ← INSERT(D, ei)

end if
end if
Clusters← RANKCLUSTERS(G, l)
Tq,c ← []
j ← 1
for all v ∈ SORTBYTIME(Clusters) do
Tq,c[j]← SUMMARIZE(v, k)
j ← j + 1

end for
return Tq,c

Problem Definition
Constrained timeline summarization is a task to generate a
timeline T that includes important events related to a topic
and adhering to a constraint, given a list of input documents.
The input comprises temporally ordered documents A =
{a1, a2, ...} related to a specific topic q, a constraint c, the
expected number of dates l in the timeline, and the expected
number of sentences per date k. The system-generated time-
line T will be evaluated against a ground-truth timeline R.
Similar to most timeline summarization datasets, the list of
documents in this dataset is a list of chronologically ordered
news articles. The constraint is a natural language sentence

that specifies the kind of events related to the topic q that
should be included in the timeline.

Method
Following the LLM-TLS method (Hu, Moon, and Ng 2024),
we propose a new approach for the constrained timeline
summarization task by leveraging a large language model
(LLM) for summarization and clustering, which we call
REACTS (REflective Algorithm for Constrained Timeline
Summarization). Our method consists of four main steps:
event summarization, self-reflection, event clustering, and
finally, cluster and sentence selection. The core idea is to
summarize each document according to the constraint, clus-
ter the summaries that relate to the same event, and trans-
form the clusters into event descriptions with corresponding
dates. We illustrate our method in Figure 2.

Event Summarization
Inspired by the effectiveness of LLMs in query-based sum-
marization (Jiang et al. 2024), we employ large language
models for event summarization. The summary is expected
to be in the format of a date followed by a one-sentence sum-
mary of a key event in the article related to the keyword and
that adheres to the constraint, such as, ”2021-06-04: The
miniseries *Lisey’s Story*, adapted by King and based on
his 2006 novel of the same name, premieres on Apple TV+.”
If there is nothing to summarize that meets the constraint, the
model is expected to output NULL. We refer to this process
as CONSTRAINEDTOPICSUM in Algorithm 1.

Each article includes a publication date, but the important
event may occur sometime before the publication date with-
out an explicit mention of the exact date in the article. To
assist the model in generating the correct date, we prepro-
cess the news articles by prepending the sentence with the
exact date whenever a time reference is mentioned. For ex-
ample, if the publication date is 14 August 2024, and a sen-
tence in the article contains a time reference like “yesterday,”
the sentence is prepended with “(2024-08-13)”. Similarly, if
the article mentions “last Friday,” the sentence is prepended
with “(2024-08-09)”. The time references are parsed using
HeidelTime5 (Strötgen and Gertz 2015).

Self-Reflection
Self-evaluation techniques have been reported to improve
the reasoning capabilities of LLMs (Weng et al. 2023; Xie
et al. 2024). We observe that LLMs often produce an event
summary even when it does not adhere to the specified con-
straint. To mitigate this, we employ self-reflection as an ad-
ditional verification step by prompting the same LLM to as-
sess whether the summary it just generated, ei, for topic t ad-
heres to the constraint c. If the model determines that it does
not, ei is discarded and excluded from the timeline genera-
tion. We refer to this process as ADHERETOCONSTRAINT
in Algorithm 1. The input prompt to perform self-reflection
is given in Table 3.

5https://github.com/HeidelTime/heideltime
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Figure 2: Illustration of our method for constrained timeline summarization (REACTS). The method consists of four steps:
event summarization, self-reflection, event clustering, and cluster and sentence selection.

Review the timestamped event description related to key-
word, accompanied by a constraint. Please determine
whether the event description complies with or corre-
sponds to the constraint. Respond with ‘Yes’ if the event
description aligns with the constraint, or with ‘No’ if it
does not.
#################
{positive example}

#################
{negative example}

#################
### Event
{event}

### Constraint
{constraint}
### Answer

Table 3: Prompt template for self-reflection.

Event Clustering
For every event summary ei that passes the self-reflection
step, the event description is encoded using the General Text
Embeddings (GTE) model (Li et al. 2023). The summaries
are transformed into embedding vectors so that semantically
similar event summaries describing the same event can be
accurately grouped together into a cluster. GTE performs
exceptionally well on the Massive Text Embedding Bench-
mark (MTEB) while maintaining a modest number of pa-
rameters, making it an ideal choice for encoding summaries
from tens of thousands of articles.

To generate clusters, from a vector database D, we re-
trieve N event descriptions that have the closest embedding
vectors to the current event description being processed (the

RETRIEVE function in Algorithm 1). For each pair consist-
ing of the current event description and its retrieved neigh-
bor, we use an LLM with few-shot prompting to check
whether they describe the same event. In addition to this
description matching by the LLM, we also check whether
the event dates are the same, as events with similar descrip-
tions but different dates likely represent distinct occurrences.
This process is denoted as the SAMEEVENT function in Al-
gorithm 1. If the pair passes both checks, the current event
description is added to the cluster of its first matching neigh-
bor. If the event description does not match any of its top N
neighbors, it forms its own cluster. Finally, the embedding
vector of each summary is stored in D to facilitate grouping
with similar subsequent event descriptions.

Cluster and Sentence Selection
Each cluster represents an event related to the topic. To gen-
erate a timeline with l events, we select the best l clusters and
summarize the event descriptions within each cluster into k
sentences as specified by the user. We employ a heuristic to
choose the top l clusters based on size, with the intuition that
more significant events are covered by more articles, espe-
cially in the news domain. Subsequently, we apply TextRank
(Mihalcea and Tarau 2004) to select the best k sentences
within each cluster.

Baseline Method
A straightforward approach to perform constrained timeline
summarization using an LLM is to concatenate the articles
into the prompt and directly ask the model to produce a con-
strained timeline. However, LLMs have a limited context
window size, so it is not always possible to fit the entire ar-
ticle pool within the input. To address this limitation, the
baseline method involves randomly sampling articles and
incrementally adding them to the input prompt one by one
until the input context size limit is reached (taking into ac-
count the space needed for the instruction prompt and the
output). Next, an instruction is added to the prompt, asking
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AR-1 AR-2 Date F1
Model LLM P R F1 P R F1 P R F1
All events

REACTS w/o SR L3.1-8B 0.0580 0.0541 0.0561 0.0262 0.0264 0.0263 0.1399 0.1391 0.1395
REACTS L3.1-8B 0.0859 0.0695 0.0768 0.0381 0.0326 0.0351 0.1809 0.1710 0.1758
REACTS w/o SR L3.1-70B 0.0701 0.0957 0.0809 0.0326 0.0496 0.0393 0.1773 0.1773 0.1773
REACTS L3.1-70B 0.0970 0.1246 0.1091 0.0434 0.0592 0.0501 0.2425 0.2396 0.2411

Filtered events
BASELINE L3.1-8B 0.0387 0.0180 0.0246 0.0042 0.0026 0.0032 0.1005 0.0574 0.0731
REACTS w/o SR L3.1-8B 0.0769 0.0693 0.0729 0.0337 0.0339 0.0338 0.1749 0.1743 0.1746
REACTS L3.1-8B 0.1095 0.0882 0.0977 0.0497 0.0427 0.0459 0.2266 0.2211 0.2238
BASELINE L3.1-70B 0.0687 0.0939 0.0793 0.0324 0.0480 0.0387 0.1341 0.2524 0.1751
REACTS w/o SR L3.1-70B 0.0906 0.1220 0.1040 0.0405 0.0614 0.0488 0.2315 0.2315 0.2315
REACTS L3.1-70B 0.1152 0.1533 0.1316 0.0483 0.0703 0.0572 0.2925 0.2925 0.2925

Filtered events (10% data)
BASELINE GPT-4o 0.0487 0.1451 0.0729 0.0216 0.0730 0.0334 0.2065 0.3176 0.2506
REACTS GPT-4o 0.0652 0.1386 0.0887 0.0281 0.0752 0.0409 0.3000 0.3000 0.3000

Table 4: Score comparison of the baseline method, our method (REACTS), our method without self-reflection (REACTS w/o
SR) using Llama 3.1 8B (L3.1-8B), Llama 3.1 70B (L3.1-70B), and GPT-4o on our dataset (CREST). We evaluate the models
on precision (P), recall (R), and F1 scores using alignment-based ROUGE-1 (AR-1), alignment-based ROUGE-2 (AR-2), and
date F1-score metrics. The best scores for each experiment setting are boldfaced.

the model to generate a timeline comprising l events, each
described with a date and a k-sentence summary that adheres
to the constraint c. The model then generates the timeline
token-by-token until it either determines that it should stop
or reaches the token limit.

Experiments
We run experiments to investigate whether self-reflection
helps in generating more relevant timelines. We evalu-
ate our method on our proposed dataset, both against the
ground-truth timelines with all events and ground-truth
timelines with filtered events. We employ Llama-3.1 8B6

(Llama Team 2024), Llama-3.1 70B, and GPT-4o (OpenAI
2024) as the LLMs for our proposed method and the baseline
method. However, we only evaluate models with GPT-4o on
10% of the test set due to cost consideration. In all exper-
iments, we set the generation temperature of the LLMs to
zero to make the results reproducible.

As previously explained, the baseline method is inher-
ently limited by the maximum context length of the LLM.
Therefore, it can only consider a limited number of articles
when generating a timeline. To evaluate the best possible
performance of the baseline method, we also conduct addi-
tional experiments with an oracle article retriever. From the
article pool, the oracle retriever retrieves only articles rele-
vant to the events in the unconstrained ground-truth timeline.
Even though the oracle retriever helps to filter out noisy arti-
cles, the models still need to determine whether the events in
the articles adhere to the constraints. The set of articles kept
by the oracle retriever is then randomly sampled to fit the
context length of the baseline method and used as the final
article pool for all methods. That is, in this experiment, all

6https://llama.meta.com/

methods receive the exact same set of input articles to gen-
erate the timeline summary. We use GPT-4o as the oracle
retriever; therefore, we do not use it as the backbone LLM
for the methods.

Evaluation
We evaluate the experiments with the standard metrics for
the timeline summarization task, which are alignment-based
ROUGE F1-score (Martschat and Markert 2017) and date
F1-score (Martschat and Markert 2018). We employ an ap-
proximate randomization test (Riezler and Maxwell 2005;
Chinchor, Hirschman, and Lewis 1993) with 100 trials and
a p-value of 0.05 to measure statistical significance.

Alignment-Based ROUGE F1-score The alignment-
based ROUGE F1-score measures the text overlap of the
event descriptions between the predicted timeline and the
ground-truth timeline. It first aligns the events in the pre-
dicted timeline with events in the ground-truth timeline
based on the closeness of the dates and the similarity of the
event descriptions. Following (Ghalandari and Ifrim 2020),
we use the alignment setting that allows many-to-one align-
ment.

For each pair of aligned predicted event and ground-truth
event, the metric7 measures the n-gram similarity between
the event descriptions. Precision is proportional to the ratio
of the overlap compared to the predicted event description,
while recall is proportional to the ratio of the overlap com-
pared to the ground-truth event description.

Date F1-Score The date F1-score simply measures the
F1 score of the dates covered in the ground-truth timeline

7We use ROUGE v1.5.5 by Chin-Yew Lin with -n 2 -m -s
arguments, which measures up to 2-gram similarity of stemmed
words, ignoring stopwords.
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AR-1 AR-2 Date F1
Model LLM P R F1 P R F1 P R F1
With oracle retriever on filtered events

BASELINE L3.1-8B 0.0761 0.0829 0.0794 0.0299 0.0310 0.0305 0.2160 0.2935 0.2489
REACTS w/o SR L3.1-8B 0.0966 0.0800 0.0875 0.0399 0.0341 0.0367 0.2172 0.2151 0.2161
REACTS L3.1-8B 0.1505 0.1102 0.1272 0.0687 0.0490 0.0572 0.2916 0.2766 0.2839
BASELINE L3.1-70B 0.1149 0.1764 0.1392 0.0429 0.0767 0.0550 0.2539 0.4811 0.3324
REACTS w/o SR L3.1-70B 0.1142 0.1488 0.1292 0.0482 0.0655 0.0555 0.3165 0.3132 0.3148
REACTS L3.1-70B 0.1810 0.2213 0.1991 0.0735 0.0959 0.0832 0.4769 0.4485 0.4622

Table 5: Results of the experiments with oracle retriever of the baseline method, our method (REACTS), our method without
self-reflection (REACTS w/o SR) using Llama 3.1 8B (L3.1-8B) and Llama 3.1 70B (L3.1-70B). We evaluate the models on
precision (P), recall (R), and F1 scores using alignment-based ROUGE-1 (AR-1), alignment-based ROUGE-2 (AR-2), and date
F1-score metrics. The best scores for each experiment setting are boldfaced.

against the dates in the predicted timeline. Unlike alignment-
based ROUGE, date F1-score performs hard matching of the
dates and does not consider the event descriptions.

Results
We present our main experimental results in Table 4. Our
findings indicate that our method significantly outperforms
the baseline. The baseline method using Llama struggles to
produce a coherent timeline. It often fails to determine when
to stop and occasionally generates nonsensical outputs, es-
pecially with Llama-3.1 8B. Even when we use GPT-4o,
our method still achieves better F1 scores than the baseline.
However, note that GPT-4o may have a slight advantage over
the other LLMs, as it was used in the dataset creation pro-
cess.

We also observe that self-reflection significantly improves
all scores (i.e., precision, recall, and F1) across all met-
rics (i.e., AR-1, AR-2, and date F1) in all experimental
settings with Llama-3.1. With Llama-3.1 70B, when eval-
uated against ground-truth timelines without event filter-
ing (all events), self-reflection improves the AR-1 F1 score
by 2.82%, the AR-2 F1 score by 1.08%, and the date F1
score by 6.38%. When evaluated against filtered ground-
truth timelines, self-reflection improves the AR-1 F1 score
by 2.76%, the AR-2 F1 score by 0.84%, and the date F1
score by 6.10%.

With the oracle retriever (Table 5), using Llama-3.1 8B,
our method still significantly outperforms the baseline by
4.78%, 2.67%, and 3.50% on AR-1 F1, AR-2 F1, and date
F1 respectively. The score improvements are even greater
with the larger Llama-3.1 70B model, reaching 5.99%,
2.82%, and 12.98% on AR-1 F1, AR-2 F1, and date F1 re-
spectively.

The baseline method is impractical for real-world applica-
tions where hundreds of thousands of news articles are pub-
lished each month. Regardless of the context window size,
it cannot keep up with the speed and volume of information
flowing through the internet. We have shown that even with
the same set of articles (in the oracle retriever setup), our
method is superior. Furthermore, the baseline method is un-
suitable for online (streaming) processing. Every time a new
article is added, previous articles need to be reprocessed to

update the timeline, leading to significant computational in-
efficiency.

Conclusion
In this paper, we propose a new task with high relevance
to current needs, called constrained timeline summarization.
We present a new test set for the task (CREST), which was
built by generating the constraints using human-in-the-loop
collaboration with an LLM, hiring annotators to annotate the
adherence of the events in the ground-truth timeline to the
constraints, and filtering the events without supporting arti-
cles by utilizing an LLM.

We also propose an effective method that utilizes LLMs
for the task. Our method does not require any training and
can work with different LLMs. Our method works by sum-
marizing the articles according to the constraint, employing
a self-reflection procedure to filter out irrelevant summaries,
clustering the summaries that describe the same event, and
selecting the top l clusters and the top k sentences for each
cluster to generate the constrained timeline.

Lastly, we demonstrate the effectiveness of our method
by comparing it against a baseline method that generates
the timeline directly by concatenating all the articles into
its input prompt. We show that our method successfully out-
performs the baseline on all metrics. Similarly, we demon-
strate the effectiveness of self-reflection by comparing our
method to a variant of our method that does not employ self-
reflection, and show that self-reflection effectively improves
the F1 scores on all metrics. With this work, we hope that
constrained timeline summarization can gain more attention
and more progress can be achieved on this task in future.
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